Languages of the WEB

Jukka K. Nurminen
24.1.2012



Last Time

* |Introduction
* Practicalities (Lectures, Assignments, etc.)



Today

What are the languages of web

Presentation and data
— HTML, CSS

— XML
e XML tools
 EXI

— JSON

Programming
— JavaScript (client side at browser)
— PHP, Python, Pearl, Java, ... (server side)

XML Schema Assignment

Pair formation during break/after lecture
Signup for assignments by tomorrow
Android lecture following



HTML

<html>

<head> e Tags specify how the
<title> title goes .

here </title> J page IOOkS llke (eg

</head> |11)

<body b lor="white" . . .

ot binans | ThrEe e This is fine for the

<hl> My first page </ browser to show

hl>

static pages

This is my first web

* Butitis not easyto
use this form for data
transfer

</body>
</html>



Server-Browser data transfer
(static content)

HTML

* When the browser just renders
the page created by the server
HTML works fine



Server-Browser data transfer
(dynamic content)

HTML => XML, JSON

* If the server needs to process the incoming data HTML
IS problematic.
« E.g. in if only part of the page needs to be
redisplayed (as is the case in AJAX)
 This requires that the browser is able to parse and
understand the data to be able to process it



Server-Server data transfer

Server wants to process
data coming from other
servers

HTML (
» OALY, = =1V E

» Server1 is not interested in
page presentation

=> HTML not optimal

A data transfer language is
needed

=> XML

HTML? => XML




Personalized tags needed

e HTML started with very few tags ...

* Language evolved, as more tags were added
— forms
— tables
— fonts
— frames

= Need for personalized tags for different
domains
=> E.g. for math, music, purchase orders, ...



MathML

: o 32 _
 Designed to X"+ ax+4=0
<mrow>

exXpress <mrow>

<msup> <mi>x</mi> <mn>2</mn> </msup>

semantics of <Mo>+</mMo>
maths <mrow>

<mn>4</mn>
<mo>&invisibletimes;</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>

e Cut & paste <mn>4</mn>

</mrow>

into Maple, <mo>=</mo>
Mathematica <mn>0</mn>

</mrow>



Applications need to parse the data

* HTML syntax was loosely defined which makes
its programmatic manipulation difficult
— Closing tags are optional

— Different browsers tolerated different violations
of HTML syntax

— (Newer HTML specs XHTML, HTMLS5 stricter in this
sense, but their adoption is slow because of
backward compatibility issues)

= Need for a more structured and well-defined
presentation



XML Example

<?xml version="1.0"?>

<product barcode="2394287410">
<manufacturer>Verbatim</manufacturer>
<name>Datal.ife MF 2HD</name>
<quantity>10</quantity>
<size>3.5"</size>
<color>black</color>
<description>floppy disks</description>

</product>



Elements and attributes

* <messages>
<note[id="p501ﬂ>
{ <to>Tove</to> ]
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this
weekend! </body>

Attributes (for auxiliary data)

Elements between tags

</note> Borderline between
<note 1d="pb02"> elements and attributes
<to>Jani</to> .. IS not clear. Attributes are

mainly for auxiliary data.
Elements for main data



Suitability of XML

* Suitable for storing and exchanging any data that
can plausibly be encoded as text.

* Unsuitable for digitized data such as

photographs, recorded sound, video, and other
very large bit sequences

— But it works well for storing the metadata of such
items

e Uses of XML

— Data transfer between applications
— Configuration files



Example Uses

A web browser, such as Netscape Navigator or
Internet Explorer, that displays the document to a
reader

A word processor, such as StarOffice Writer, that
loads the XML document for editing

A database, such as Microsoft SQL Server, that
stores the XML data in a new record

A personal finance program, such as Microsoft
Money, that sees the XML as a bank statement

A syndication program that reads the XML
document and extracts the headlines for today's
news



What XML is not

* Not a programming language
— you cannot execute XML

* Not a network transport protocol
— Actual sending with HTTP, FTP, etc.

* Not a database

— But XML can be stored and retrieved from
databases

— Some databases are able to return query results in
XML form



Parsing XML

DOM

e Stores the entire XML
document into memory before
processing

e Occupies more memory

e We can insert or delete nodes
e Traverse in any direction.

e DOM is a tree model parser

e Document Object Model (
DOM) API

® Preserves comments

e SAX generally runs a little faster
than DOM

SAX
e Parses node by node

e Doesn’t store the XML in
memory

e We cant insert or delete a node
e SAX is an event based parser

e SAX is a Simple API for XML

e doesn’t preserve comments

e SAX generally runs a little faster
than DOM



Performance comparison

3.732 40,358
2.976 0.926 8.23 281,308
2.482 o078 0.81 10.11 389,044
0.7

0.546
1.3

0.458

Table 1: Test Results

Source: http://www.devx.com/xml/Article/16922/1954



HTML vs. XML

 HTML e XML
— Fixed set of tags — Extensible set of tags
— Presentation oriented — Content oriented
— The language of web — The meta language for
pages defining new domain

specific languages



SGML

* SGML

— Standard Generalized
Markup Language

— Meta language for
defining languages

— Complex, sophisticated,
powerful

— Very advanced but also
very complicated

Old markup languages:
troff, tex, etc

Math M L

HTML I |
XHTML



Well-formed and Valid

 Well-formed
— Syntactically correct XML

e Valid
— Matches a defined XML Schema



New (or not so new) Challenges

Internet-of- Rise of dominant
Things (M2M proprietary
communication) solutions
(Google,
Eé Facebook, etc.) Data (f”te"
______ » Cellular access Server to server
communication
Mobile clients, v
heterogeneous —
~_ clients = I
=
N # User generated Data center
| content
Social
WLAN/ADSL access networking

Usability of battery powered devices, energy cost, and environmental concerns



XML Summary

Metamarkup language, standardized by W3C
In comparison to HTML nothing about presentation

Elements within tags
XML Applications

— Individual or organizations agree to use a set of tags
Well-formed - Syntactically correct XML

Valid - Matches Schema

Schema definitions
— DTD

— document type definition

— XML Schema



Related standards

Namespaces
— Modular document definition, multiple inheritance, collision avoidance

XPath / XQuery

— Navigation and query of parts of the document
XML linking language (Xlink)

— Associations between multiple resources

— Rules for traversal

XML Schema
— definition of document structure and custom data types

XSLT
— Extensible Stylesheet Language Transformation

— Transformation of documents



XML Schema and other
standards



XML Schemas and instances

* To be useful all parties have to agree what
tags are available and what they mean

 => Need to describe what tags are available
and how they are used

e Also what kind of values should they contain



XML Schemas and instances

Defines tags and Compare to object-
other parameters oriented programming

v

) v
— - nstance
(.XML file)

Provides the data




Schema definition

e Main alternatives
— DTD

* Document Type Definition
e Borrowed from SGML

— XML Schema
XML based way to define XML schemas



DTD

<!DOCTYPE NEWSPAPER [

<!ELEMENT NEWSPAPER (ARTICLE+)>
<!ELEMENT ARTICLE
(HEADLINE, BYLINE, LEAD, BODY, NOTES) >
<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT BYLINE (#PCDATA)>
<!ELEMENT LEAD (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT NOTES (#PCDATA) >

<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED>
<!ATTLIST ARTICLE EDITOR CDATA #IMPLIED>
<!ATTLIST ARTICLE DATE CDATA #IMPLIED>
<!ATTLIST ARTICLE EDITION CDATA #IMPLIED>
1>



Limitations of DTD

e Difficult to define other constraints than
element nesting and recurrence

* DTD syntax is not XML



XML Schema

* <?xml version="1.0"7?>
<xs:schema xmlns:xs=http://www.w3.0rg/2001/

XMLSchema>

<xs:element name="note">

<xs:complexType>
<XSs:sequence>
<xs:element
<xXs:element
<xs:element
<xs:element
</xs:sequence>
</xs:complexType>
</xs:element>
</xXs:schema>

name="to" type="xs:string"/>
name="from" type="xs:string"/>
name="heading” type="xs:string"/>
name="body" type="xs:string"/>



About XML Schema

XML language for describing and constraining the
content of XML documents

A W3C Recommendation
Used to specify

— The allowed structure of an XML document

— The allowed data types contained in XML documents

XML Schema documents are XML documents

Schema document: elements, attributes, and type
definitions + annotations



Defining a simple element

 Asimple element is defined as
<xs:element name="name”

type="type" />
where:
— name is the name of the element

— the most common values for type are
xs:boolean xs:integer
xs.date  xs:string
xs.decimal xs:time

 Example
« <xs:element name="to" type="xs:string"/>



Defining an attribute

Attributes themselves are always declared as simple types

An attribute is defined as
<xs:attribute name="name" type="type" />
where:
— name and type are the same as for xs:element

Other attributes a simple element may have:
— default="default value if no other value is specified

— fixed="value" no other value may be specified

— use="optional” the attribute is not required (default)

— use="required the attribute must be present
Example

— <xs:attribute name="orderid" type="orderidtype"” use="required"/>



Restrictions, or “facets”

 The general form for putting a restriction
on a text value is:

— <xs:element name="name"> (or xs:attribute)

<xs:restriction base="type">

... the restrictions ...
</xs:restriction>
</xs:element>

* For example:

— <xs:element name="age">

<xs:restriction base="xs:integer">
<xs:minInclusive value="0">
<xs:maxInclusive value="140">
</xs:restriction>
</xs:element>



Complex elements

* Acomplex element is defined as
<xs:element name="name">

<xs:complexType>
... information about the complex type...

</xs:complexType>
</xs:element>

e Example:
<xs:element name="person”>
<xs:complexType>
<Xxs:sequence>
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

e <XS:sequence> says that elements must occur in this order

Local definition of complex type




Globally defined complex type

Definition
<xs:complexType name=“personType”>
<Xxs:sequence>
<xs:element name="firstName" type="xs:string" />
<xs.element name="lastName" type="xs:string" />
</xs:sequence>
</xs:complexType>

« Use
<xs.element name="student"” type="personType"/>
<xs.element name="professor” type="personType"/>



XSLT

How to transform XML documents to
other kinds of documents?



XSLT

e XSLT stands for Extensible Stylesheet Language
Transformations

e XSLT is used to transform XML documents into

other kinds of documents, e.g. to HTML or other
kind of XML

e XSLT uses two input files:
— The XML document containing the actual data

— The XSL document containing both the “framework”
in which to insert the data, and XSLT commands to do
SO



Why transform?

e Convert one schema to another
* Rearrange data for formatting

* Some special transforms
XML to HTML— for old browsers

XML to LaTeX—for TeX layout
XML to SVG—graphs, charts, trees

XML to plain-text—occasionally useful



Very simple example

* File data.xml:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="render.xsl"?>
<message>Hello</message>

* File render.xsl:

<?xml version="1.0"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<!-- one rule, to transform the input root (/) -->

<xsl:template match="/"> Tells which part of the tree to process
<html><body>
<h1><xsl:value-of select="message"/></h1>
</body></html>
</xsl:template> Finds the “message” element

</xsl:stylesheet>



JSON

JavaScript Object Notation



The trouble with XML?

XML documents tend
to be verbose

=> Communication
overhead

XML ¢ Not very easy
Rrowse arve for humans to
write or read

XML

Modern web applications process data
in the browser typically with JavaScript
(AJAX) SRS
«=> processing XML data is heavy




JSON

JavaScript Object Notation
Minimal

Textual

Subset of JavaScript

Increasingly popular
* Many services return data in JSON format

Yet another example where simpler is better



JSON Example

e {"skills": {
Ilwebll : [
{"name": "html",
llyearS”: ll5,,

}
{

"name": "css",
"yearS": ll3,,
1
"database" :
{IlnameII: llsqlll,
"YearS": Il7ll}]

H}



What is JSON?

* Lightweight data-interchange format
— Compared to XML

* Simple format
— Easy for humans to read and write
— Easy for machines to parse and generate

* JSON is a text format
— Programming language independent

— But is especially well suited for JavaScript
manipulation



JSON & JavaScript

* You can evaluate the JSON object in JavaScript
— Assign it to a variable and access via normal
JavaScript mechanisms for objects and arrays
 Compare this with the XML approach where
vou have to traverse the XML tree to extract
the values before you can do something with
them



Similarities between JSON and XML

 They are both 'self-describing' meaning
— that values are named, and thus 'humanreadable’

* Both are hierarchical. (i.e. You can have values
within values.)

* Both can be parsed and used by lots of
programming languages

* Both can be passed around using AJAX (i.e.
httpWebRequest)



JSON vs. XML

Lighter and faster than XML as on-the-wire data format
— Relevant for mobile devices, data transfer costs
JSON is less verbose
— Quicker for humans to write, and probably easier to read
JSON objects are typed while XML data is typeless
— JSON types: string, number, array, boolean,
— XML data are all string
Native data form for JavaScript code

— XML data needed to be parsed and assigned to variables through
tedious DOM APIs

— Data is readily accessible as JSON objects in your JavaScript code

— Retrieving values is as easy as reading from an object property in your
JavaScript code



Efficient XML Interchange (EXI)

What is EXI?

EXI stands for Efficient XML Interchange. It is
commonly known as "binary XML"

EXI enables you to operate on XML without being aware
that you are using a much smaller binary-formatted XML

EXl is a W3C recommendation
Benefits of EXI?
EXI avoids the bloatedness of text-formatted XML

Applications can generate EXI directly and can operate on
EXI directly, without first converting to text-formatted XML

You can validate a binary-formatted XML document in the
same way you validate a text-formatted XML document



notebook.xml

Contains comments, PIs, namespace prefixes.

Source: Roger L. Costello, 2011 http://www.xfront.com/EXI/index.html



notebook.exi

U <EYYYE >>Y X>0U0E >U™A [ »Y X >000
EAeE d° "nZ rZbe +s{f*@
&
EL
ELEe http://www.category.org
category EXI" x&A0EEEEE +72<4h &
11,1iLi®,,
., &€? Im
1
-1a
.n€ U0O@OXRPPUESP




EXI Compactness Compared to Gzipped XML

120.00%

100.00%

50.00%

— XML
60.00% ——Gzipped XML
—— Efficient XML

@
B

»
-
=
>
=2

40.00%

20.00%

Test cases (sorted by best result)




How EXI compression works

Example 2-1. Notebook (XML Document)

<?xml version="1.0" encoding="UTF-8"2>

<notebook date="2007-09-12">

<note category="EXI" date="2007-07-23">
<subject>EXI</subject>
<body>Do not forget it!</body>
</note>

<note date="2007-09-12">
<subject>Shopping List</subject>
<body>milk, honey</body>

</note>

</notebook>

See: http://www.w3.0rg/TR/2009/WD-exi-primer-20091208/



Convert into stream of events

. 3 ~ - . 3
Q Q Q [&] Q

° Kol - - ) - - QO

S e 28 @© F 5% ¥Teee & 2ET Tee

Structure g 3 28 3 7 2 8 S ¢2¢838 2 @2 8 8 228

Coding ' sp SE AT SE Al Al SE EE SE EE EE SE AT SE EE SE EE EE EE EL
- )
9 . 2007-09-12 EX] 2007-07-23 EXI Do not forget it) 2007-09-12 Shop .. milk, honey

. * B . o a o - - o a a i3 B e o s - B = o a a - - o >>

Content body
| Coding @eﬂ-DJGG Structure ... 9

category
! Content ... @ @ @ G

date
date category subject  body




Event types

Table 2-5. EXI Event types

. | Information ltems |

EXIEvent Type Grammar Notation | Structure Content |

|Start Document |SD I | |

IEnd Document |ED I I |

ISE ( gname) |[prefix] | |

Start Element ISE (uri*) |local-name, [prefix] | |

ISE (*) |lgname, [prefix] | |

[End Element |EE I I |
|AT ( gname ) \[prefix] |

Attribute AT (uri:*) \local-name, [prefix] \value

IAT (*) \gname, [prefix] |

[Characters ICH | |value |

INamespace Declaration' INS \uri, prefix, local-element-ns | |

|Comment" (CM |[text [l |

IProcessing Instruction’ P |\name, text I |

IDOCTYPE! DT \name, public, system, text | |

[Entity Reference! |ER |\name | |

[Self Contained! [sc | I |

|

|'EXI Options such as preserve and selfContained can be used to prune events from the EXI stream to realize a more compact representation.




Efficient coding of events

Event EventCode||| #bits
AT(date) -
AT(category)
EE
AT(")

NS

SE(")

CH

CM 0
Pl 1

#distinct values|3 |6 |2 ||
5. EXI Event Code Assignment

2

2+3

2+3+1

NN NN = O
NN H)|WQIN|—-|O




Better compression by re-arrangement

...........

Structure

Content




Summary of today

HTML

XML and related languages
— XML

— DTD

— XML Schema

— XSLT

JSON
EXI



